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Resumo

Há um interesse crescente na aplicação de algoritmos evolutivos para induzir regras de classifi-

cação. Essa abordagem pode ajudar em áreas que métodos clássicos para indução de regras não

têm obtido tanto sucesso. Um exemplo é a indução de regras de classificação em domı́nios des-

balanceados. Dados desbalanceados ocorrem quando algumas classes possuem um número bem

maior de exemplos se comparado a outras classes. Geralmente, em Aprendizado de Máquina

(AM) tradicional os indutores não são capazes de aprender na presença de conjuntos de dados

desbalanceados. Estes indutores geralmente classificam todos os exemplos como sendo da classe

que possui o maior número de exemplos. Neste relatório é descrita uma abordagem h́ıbrida para

resolver o problema de indução de regras de classificação em domı́nios desbalanceados, bem como

os experimentos realizados para avaliá-la. Nesta abordagem h́ıbrida são criados vários conjuntos

de dados balanceados com todos os exemplos da classe minoritária e uma amostra randômica de

exemplos da classe majoritária. Esses conjuntos de dados balanceados são fornecidos a sistemas

de AM tradicionais, que produzem como sáıda conjuntos de regras. Os conjuntos de regras são

combinados em um repositório de regras e um algoritmo evolutivo é utilizado para selecionar

algumas regras deste repositório para construir um classificador. A abordagem descrita possui

vantagem em relação a métodos de under-sampling desde que reduz a quantidade de infor-

mação descartada, e possui vantagem em relação a métodos de over-sampling, desde que evita

overfitting. Esta abordagem foi experimentalmente analizada e os resultados dos experimentos

mostram uma melhora no desempenho de classificação medido com a área abaixo da curva ROC

(Receiver Operating Characteristic).
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1 Introdução

Há um interesse crescente na aplicação de algoritmos evolutivos para induzir regras de classifi-

cação. Essa abordagem pode ajudar em áreas nas quais os métodos clássicos para indução de

regras não têm obtido tanto sucesso. Um exemplo é a indução de regras de classificação em

domı́nios desbalanceados.

Dados desbalanceados ocorrem quando algumas classes possuem um número bem maior

de exemplos se comparado a outras classes. Geralmente, em Aprendizado de Máquina (AM)

tradicional os indutores não são capazes de aprender na presença de conjuntos de dados desba-

lanceados. Estes indutores geralmente classificam todos os exemplos como sendo da classe que

possui o maior número de exemplos. Entretanto, em muitos domı́nios, as classes minoritárias

são as classes de maior interesse, as quais são atribúıdos os custos mais altos. Por exemplo, na

detecção de transações fraudulentas em cartões de crédito e na telefonia Phua et al. (2004), no

diagnóstico de doenças raras Cohena et al. (2006) e na predição de eventos climáticos Bucene

(2008), classificar erroneamente exemplos da classe minoritária é mais caro do que classificar

erroneamente um exemplo da classe majoritária. Um classificador que simplesmente classifica

todos os exemplos como sendo da classe majoritária é inútil.

Em Milaré et al. (2009b) é proposta uma abordagem h́ıbrida para resolver o problema de

indução de regras de classificação em domı́nios desbalanceados. Nessa abordagem, o problema

de aprender com classes desbalanceadas é visto como um problema de busca, e portanto, um

algoritmo evolutivo é utilizado para melhorar a busca no espaço de hipóteses. A abordagem pro-

posta cria vários conjuntos de dados balanceados com todos os exemplos da classe minoritária e

uma amostra randômica de exemplos da classe majoritária. Esses conjuntos de dados balancea-

dos são fornecidos a sistemas de AM tradicionais, que produzem como sáıda conjuntos de regras.

Os conjuntos de regras são combinados em um repositório de regras e um algoritmo evolutivo é

utilizado para selecionar algumas regras desse repositório para construir um classificador.

O método proposto em Milaré et al. (2009b) utiliza a técnica under-sampling para criar

vários conjuntos de dados balanceados. Under-sampling elimina os exemplos da classe ma-

joritária para criar conjuntos de dados balanceados, e portanto, pode descartar dados úteis que

poderiam ser importantes para o processo de indução. A abordagem h́ıbrida não possui esta

limitação pois muitas amostras de dados são criadas e, portanto, aumenta a probabilidade de

1



todos os dados serem utilizados no aprendizado. Outra técnica utilizada para tratar dados des-

balanceados é over-sampling. Over-sampling artificialmente aumenta o número de exemplos da

classe minoritária. O maior problema desta técnica é que ela supostamente aumenta a probabi-

lidade de ocorrência de overfitting, já que faz muitas cópias dos exemplos da classe minoritária.

O método proposto evita overfitting pois limita o número de regras de cada classificador. Os

classificadores criados possuem aproximadamente o mesmo número de regras dos classificadores

individuais induzidos a partir dos dados balanceados.

A abordagem h́ıbrida proposta em Milaré et al. (2009b) foi experimentalmente analizada

sobre alguns conjuntos de dados desbalanceados utilizando inicialmente dois sistemas de AM

bastante conhecidos, C4.5Rules Quinlan (1988) e Ripper Cohen (1995) e os resultados foram

publicados em Milaré et al. (2010). Posteriormente, os experimentos foram estendidos com a

utilização do CN2 Clark and Niblett (1989) e os resultados foram publicados em Milaré et al.

(2009a). A principal métrica utilizada para avaliar os resultados foi a área abaixo da curva ROC

(Receiver Operating Characteristic), a AUC (Area Under the ROC Curve) Fawcett (2004). O

uso da métrica AUC é altamente recomendado em experimentos com classes desbalanceadas,

pois métricas que dependem dos custos e distribuição das classes, tal como acurácia e taxa de

erro, podem enganar em domı́nios desbalanceados.

O objetivo deste relatório técnico é descrever a abordagem proposta em Milaré et al.

(2009b), bem como os experimentos realizados para a sua avaliação.

Este trabalho está organizado da seguinte forma: na Seção 2 são apresentados alguns

trabalhos relacionados; na Seção 3 é descrita a abordagem proposta; na Seção 4 são descritos

os experimentos realizados; e finalmente, na Seção 5 algumas conclusões e trabalhos futuros são

apresentados.

2 Trabalhos Relacionados

Nesta seção são descritos alguns trabalhos relacionados a classes desbalanceadas e métodos para

combinar classificadores.
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2.1 Classes Desbalanceadas

A precisão de classificação de muitos algoritmos de AM é altamente afetada pela distribuição

dos exemplos entre as classes. Como muitos sistemas de aprendizado são projetados para traba-

lhar com conjuntos de dados balanceados, eles geralmente falham na indução de classificadores

capazes de predizer a classe minoritária.

A investigação de alternativas para trabalhar de forma eficiente com problemas que en-

volvem classes desbalanceadas é uma área importante de pesquisa, pois conjuntos de dados des-

balanceados podem ser encontrados em diversos domı́nios. Por exemplo, na detecção de fraudes

em chamadas telefônicas e em transações de cartão de crédito Fawcett and Provost (1997); Stolfo

et al. (1997); Phua et al. (2004), o número de transações leǵıtimas é geralmente muito maior do

que o número de transações fraudulentas; em análise de risco em seguro Pednault et al. (2000),

poucos clientes requisitam o prêmio de seguro em um determinado intervalo de tempo; e em

marketing direto Ling and Li (1998), o retorno é geralmente muito pequeno (em torno de 1%)

para a maioria das campanhas de marketing.

Muitos trabalhos têm analizado o problema de aprender sobre conjunto de dados desba-

lanceados (por exemplo, Pazzani et al. (1994); Ling and Li (1998); Kubat and Matwin (1997);

Fawcett and Provost (1997); Kubat et al. (1998a); Japkowicz and Stephen (2002); Batista et al.

(2004); Weiss (2004)). Entre as principais estratégias utilizadas por estes trabalhos, três abor-

dagens se destacam:

• Aplicar diferentes custos para classificações incorretas: os custos mais altos são aplicados

às classes minoritárias;

• Under-sampling : balancear artificialmente os dados de treinamento eliminando exemplos

da classe majoritária;

• Over-sampling : balancear artificialmente os dados de treinamento replicando exemplos da

classe minoritária.

A abordagem h́ıbrida proposta em Milaré et al. (2009b) utiliza under-sampling como um

passo intermediário para criar muitos conjuntos de dados balanceados. Outros trabalhos utilizam

uma abordagem semelhante para tratar classes desbalanceadas. Por exemplo, Chan and Stolfo
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(1998) divide os exemplos da classe majoritária em muitos subconjuntos não sobrepostos com

aproximadamente o mesmo número de exemplos da classe minoritária. Cada subconjunto é

combinado com os exemplos da classe minoritária para formar conjuntos de dados balanceados

que são fornecidos a um algoritmo de aprendizado. Os classificadores obtidos são integrados

utilizando stacking Wolpert (1992). Uma abordagem similar é proposta em Liu et al. (2009), em

que Adaboost Freund and Schapire (1997) integra a sáıda de muitos classificadores induzidos a

partir de conjuntos de dados balanceados tratados com under-sampling.

A abordagem h́ıbrida proposta difere de trabalhos previamente publicados, pois o interesse

é criar classificadores simbólicos, isto é, classificadores que podem ser facilmente interpretados

por humanos. Embora ensembles possam ser constrúıdos a partir de diversos classificadores

simbólicos individuais, o classificador final não pode ser considerado um classificador simbólico,

pois este classificador não pode ser facilmente interpretado.

2.2 Combinando Classificadores

Muitos trabalhos na literatura descrevem alternativas diferentes para combinar classificadores.

Uma aboradagem direta para combinar classificadores é utilizar ensembles Opitz and Maclin

(1999); Dietterich (1997b). Um ensemble é composto por um conjunto de classificadores in-

dividuais cujas predições são combinadas para determinar a classe a que pertence um novo

exemplo. Geralmente, um ensemble é mais preciso que seus classificadores individuais. Apesar

do ganho em desempenho, que geralmente é obtido quando se utiliza ensembles, a combinação

de classificadores simbólicos resulta em um classificador final não simbólico. Dois exemplos bem

conhecidos de ensemble são Bagging e Booting.

Bagging Breiman (1996) é a técnica mais antiga e simples para criar um ensemble de

classificadores. Essa técnica utiliza voto majoritário para combinar predições de classificadores

individuais e aplica a classe mais frequentemente predita como a classificação final.

Diferente de Bagging, em Boosting Schapire (1990), cada exemplo de treinamento é as-

sociado a um peso. Este peso está relacionado com a taxa de acerto da hipótese induzida para

aquele exemplo particular. Uma hipótese é induzida por iteração e os pesos associados com cada

exemplo deve ser modificado.

Uma segunda abordagem para combinar classificadores é integrar o conhecimento gerado
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por diferentes classificadores em uma única base de conhecimento e, então, utilizar um método

de seleção de regras para criar um classificador. Em Prati and Flach (2005), os autores pro-

puseram um algoritmo denominado ROCCER para selecionar regras baseado no desempenho das

regras sobre o espaço ROC. Outra técnica que utiliza uma abordagem semelhante é o algoritmo

GARSS Batista et al. (2006). GARSS utiliza um algoritmo evolutivo para selecionar regras que

maximizam a AUC. Ambos, ROCCER e GARSS, são utilizados no contexto de classificação

associativa. Outros trabalhos que utilizam algoritmo evolutivo para seleção de regras que com-

binam conhecimento de uma grande base de conhecimento podem ser encontrados em Ghosh

and Nath (2004); Bernardini et al. (2008).

A metodologia geral de induzir diversos classificadores de várias amostras de dados e

integrar o conhecimento destes classificadores em um classificador final foi inicialmente proposta

por Fayyad, Djorgovski, e Weir Fayyad et al. (1996). Esta metodologia foi implementada no

sistema RULER e utilizada no projeto SKICAT, cujo objetivo foi catalogar e analizar objetos

de imagens digitalizadas do céu. De acordo com os autores, essa metodologia foi capaz de gerar

um conjunto de regras robusto. Além disso, o classificador induzido foi mais preciso do que

astrônomos para classificar objetos cósmicos de fotografias. A metodologia adotada no sistema

RULER foi estendida no sistema XRULER (eXtended RULER) Baranauskas and Monard (2003)

para utilizar conhecimento induzido de diferentes algoritmos.

3 Abordagem Proposta

A abordagem proposta em Milaré et al. (2009b) utiliza um algoritmo evolutivo para selecionar

regras com o objetivo de maximizar a AUC para problemas que envolvam classes desbalanceadas.

Algoritmos evolutivos são algoritmos de busca baseados na seleção natural e genética Goldberg

(1989). Seu funcionamento envolve um conjunto de soluções potenciais (população), geralmente

codificadas como uma sequência de bits (cromossomos). A evolução é realizada pela aplicação

de um conjunto de transformações (geralmente, os operadores genéticos crossover e mutação),

e avaliação da qualidade (fitness) das soluções.

Como previamente descrito, a abordagem é baseada na técnica under-sampling. Entre-

tanto, para reduzir a probabilidade de perda de informação quando alguns exemplos são descar-
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tados, a abordagem cria diversos conjuntos de treinamento. Dado um conjunto de treinamento

T = T + ∪ T −, no qual T + é o conjunto de exemplos positivos (minoritário), e T − é o conjunto

de exemplos negativos (majoritário), n amostras randômicas T −1 , . . . , T −n são criadas de T −.

Cada amostra randômica T −i é uma amostra sem reposição de T − e possui o mesmo número de

exemplos do conjunto de exemplos positivos, isto é, |T −i | = |T +|, 1 ≤ i ≤ n.

Figura 1: Abordagem utilizada para criar os conjuntos de treinamento balanceados.

No total, n conjuntos de treinamento balanceados Ti são criados pela junção de T + com

cada T −i , isto é, Ti = T + ∪ T −i , 1 ≤ i ≤ n, como pode ser observado na Figura 1. O valor

do parâmetro n nos experimentos foi definido igual a 100. Os conjuntos de regras foram in-

duzidos de cada conjunto de treinamento Ti, como mostrado na Figura 2. As regras de todos

os conjuntos de regras de cada indutor foram integradas em um único repositório de regras, e

as regras repetidas foram descartadas. Nos experimentos realizados para avaliar a abordagem

proposta, os algoritmos de AM utilizados inicialmente para induzir os conjuntos de regras foram

C4.5Rules Quinlan (1988) e Ripper Cohen (1995) e posteriormente os experimentos foram es-

tendidos com a utilização do CN2 Clark and Niblett (1989).

O repositório de regras é fornecido como entrada ao algoritmo evolutivo. Uma chave

primária (um número natural) é associada com cada regra do repositório. Portanto, cada regra
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Figura 2: Indução dos conjuntos de regras.

pode ser acessada independentemente por esta chave. O método utiliza a abordagem Pitts-

burgh Smith (1980) para codificar classificadores como cromossomos. A abordagem de Pitts-

burgh é caracterizada por utilizar um classificador como um indiv́ıduo Freitas (2002). Portanto,

a população é um conjunto de classificadores. Então, neste trabalho, um vetor de chaves é uti-

lizado para representar um cromossomo, isto é, um conjunto de regras é interpretado como um

classificador, como é mostrado na Figura 3. Na implementação utilizada, a população inicial

é randomicamente composta por 40 cromossomos. A função de avaliação utilizada é a métrica

AUC medida sobre os exemplos de treinamento. O método de seleção é a seleção proporcional,

no qual o número de vezes que um cromossomo é esperado reproduzir é proporcional ao seu

fitness. Um operador de crossover simples foi aplicado com probabilidade de 0.4. O operador de

mutação altera o valor de elementos do cromossomo randomicamente selecionados, ou seja, uma

regra randomicamente selecionada do cromossomo é trocada por outra regra também randomi-

camente selecionada da base de regras. O operador de mutação foi aplicado com probabilidade

de 0.1. As taxas com que os operadores de mutação e crossover são aplicados foram escolhidas

baseadas na experiência prévia com algoritmos evolutivos Milaré et al. (2004). O número de

gerações é limitado em 20. Finalmente, a implementação utiliza um operador de elitismo para

reposição da população. De acordo com este operador, o melhor cromossomo de cada população

é preservado para a próxima geração.

Como mencionado anteriormente, cada cromossomo representa um classificador. Tipica-

mente, a abordagem de Pittsburg permite indiv́ıduos de tamanhos variáveis que podem ter seus
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Figura 3: Abordagem utilizada para codificar os classificadores como cromossomos.

tamanhos modificados pela aplicação de crossover de dois pontos. Na abordagem proposta, o

número de regras de cada cromossomo foi fixado para evitar overfitting. Portanto, na imple-

mentação realizada é permitido apenas crossover simples, ou seja, de apenas um ponto. Como

a função de fitness é a métrica AUC sobre o conjunto de treinamento e se fosse permitido que

o cromossomo crescesse durante a execução do algoritmo evolutivo, os cromossomos poderiam

possuir muitas regras e não generalizar bem. Nos experimentos, o número de regras de cada

cromossomo difere para cada conjunto de dados. Este número é aproximadamente o número

médio de regras obtidas pelos classificadores induzidos sobre cada conjunto Ti. Quando este

número é grande, optou-se por limitar o tamanho do cromossomo em no máximo 40 regras por

questões de tempo de processamento.

4 Avaliação Experimental

Como descrito anteriormente, alguns experimentos foram realizados, utilizando os sistemas de

AM C4.5Rules Quinlan (1988), Ripper Cohen (1995) e CN2 Clark and Niblett (1989), para

avaliar a abordagem h́ıbrida proposta. Os experimentos foram realizados sob nove conjuntos

de dados de benchmark coletados do repositório UCI Asuncion and Newman (2007), e três

conjuntos de dados do “mundo real”: Mammography Chawla et al. (2002); Oil-spill Kubat

et al. (1998b); and Hoar-frost Bucene (2008). Esses conjuntos de dados são relacionados a

problemas de classificação de diferentes domı́nios de aplicação. Na Tabela 1 são resumidas
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as principais caracteŕısticas dos conjuntos de dados. Essas caracteŕısticas são: Identificador –

identificador do conjunto de dados utilizado no texto; #Exemplos – número total de exem-

plos; #Atributos(quanti., quali.) – número de atributos e número de atributos quantitativos e

qualitativos; Classes (min., maj.) – rótulo das classes minoritária e majoritária; e Classes %

(min., maj.) – porcentagem das classes minoritária e majoritária. Os conjuntos de dados na

Tabela 1 estão listados em ordem crescente de grau de desbalanceamento. Conjuntos de dados

com mais de duas classes foram transformados em problemas de classificação binário tornando

uma das classes como classe minoritária (como indicado na coluna Classes) e concatenando as

outras classes como classe majoritária.

Tabela 1: Descrição dos conjuntos de dados.
Identificador #Exemplos #Atributos Classes Classes %

(quanti., quali.) (min., maj.) (min., maj.)
CMC 1473 9 (2, 7) (1, restante) (42.73%, 57.27%)
Pima 768 8 (8, 0) (1, 0) (34.89%, 65.11%)
Yeast 1484 8 (8, 0) (NUC, remaining) (28.90%, 71.10%)
Blood 748 4 (4, 0) (1, 0) (24.00%, 76.00%)
Vehicle 946 18 (18, 0) (van, restante) (23.89%, 76.11%)
Flare 1066 10 (2, 8) (C-class, restante) (17.07%, 82.93%)
Page-blocks 5473 10 (10, 0) (restante, text) (10.22%, 89.78%)
Satimage 6435 36 (36, 0) (4, restante) (9.73%, 90.27%)
Hoar-frost 3044 236 (200, 36) (positive, negative) (6.11%, 93.89%)
Oil-Spill 937 48 (48, 0) (2, 1) (4.38%, 95.62%)
Abalone 4177 8 (7, 1) (15, restante) (2.47%, 97.53%)
Mammography 11183 6 (6, 0) (2, 1) (2.32%, 97.68%)

Cada um dos doze conjuntos de dados foi dividido em 10 pares de conjuntos de treinamento

e teste utilizando amostragem randômica estratificada. Os exemplos de treinamento são 75% do

conjunto de dados original e o conjunto de teste 25%. Dentro de cada partição, 100 conjuntos

de dados balanceados foram criados com todos os exemplos da classe minoritária e uma amostra

randômica dos exemplos da classe majoritária, como descrito previamente.

Esses conjuntos de dados balanceados foram fornecidos aos sistemas de AM C4.5Rules,

Ripper e CN2. Estes algoritmos foram executados com seus parâmetros default. As regras

de classificação geradas para cada conjunto de treinamento e para cada um dos algoritmos de

AM foram combinadas em um repositório de regras. Um algoritmo evolutivo foi utilizado para

selecionar um subconjunto de regras e construir um classificador a partir do repositório de regras,

como mostrado na Figura 4.
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Figura 4: Experimento realizado.

Como descrito na Seção 3, o tamanho do cromossomo, isto é, o número de regras de

um classificador individual foi definido como o tamanho médio dos classificadores gerados pelos

indutores C4.5Rules, Ripper e CN2. Entretanto, quando o tamanho médio era muito grande,

fato que ocorreu para os conjuntos de regras gerados pelo indutor CN2, o tamanho dos indiv́ıduos

(cromossomos) foi limitado a no máximo 40 por questões de tempo de processamento. A Tabela 2

mostra o tamanho dos cromossomos utilizados pelo algoritmo evolutivo para cada combinação
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de conjunto de dados e indutor.

Tabela 2: Tamanho dos cromossomos.
Conjunto de Dados C4.5Rules Ripper CN2
CMC 20 8 20
Pima 8 4 20
Yeast 10 4 20
Blood 4 4 20
Vehicle 12 6 12
Flare 8 4 20
Page-blocks 15 10 20
Satimage 20 6 40
Hoar-frost 10 10 24
Oil-spill 6 4 10
Abalone 20 6 40
Mammography 10 6 20

Na Tabela 3 são apresentados os resultados obtidos com o indutor C4.5Rules. Todos os

resultados são valores médios de AUC calculados sobre os 10 pares de conjuntos de treinamento

e teste. Os resultados estão divididos em três colunas. Na coluna C4.5Rules são apresentados os

resultados obtidos com o indutor C4.5Rules executado sobre os dados desbalanceados; na coluna

Under-sampling são apresentados os resultados obtidos pelo C4.5Rules sobre o conjunto de dados

balanceado obtido pela técnica under-sampling ; e, na coluna EA-C4.5Rules são apresentados os

resultados obtidos pela abordagem h́ıbrida proposta. Os melhores resultados estão em negrito.

Como pode ser observado, EA-C4.5Rules apresenta valor médio de AUC mais alto para oito dos

doze conjuntos de dados.

Tabela 3: Valor da AUC com o indutor C4.5Rules.
Data Set C4.5Rules Under-sampling EA-C4.5Rules
CMC 71.78 (01.39) 70.39 (01.97) 68.77 (02.87)
Pima 74.28 (04.13) 75.80 (01.40) 77.06 (03.52)
Yeast 74.98 (02.09) 73.69 (02.20) 76.47 (02.83)
Blood 71.22 (02.71) 69.04 (03.13) 71.01 (03.58)
Vehicle 96.96 (01.62) 95.89 (01.61) 96.22 (02.33)
Flare 72.09 (03.44) 72.70 (04.15) 69.71 (04.33)
Page-blocks 97.26 (01.42) 96.97 (00.84) 97.56 (01.09)
Satimage 86.27 (02.69) 87.96 (01.33)↓ 90.94 (01.30) ↑
Hoar-frost 86.37 (04.82) 89.58 (02.24) 92.08 (02.98)
Oil-spill 77.89 (10.48) 84.03 (04.31) 84.03 (08.06)
Abalone 77.93 (02.23) 78.31 (02.27) 80.95 (00.91)
Mammography 87.20 (03.70) 89.43 (02.55) 90.30 (02.87)

Para verificar se a diferença dos resultados obtidos entre as abordagens (C4.5Rules, Under-
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sampling e EA-C4.5Rules) é significativa ou não com 95% de confiabilidade, foi utilizado o

teste de hipótese k-fold cross-validated pairet t Dietterich (1997a). Neste teste comparou-se os

resultados obtidos pela abordagem EA-C4.5Rules e C4.5Rules, EA-C4.5Rules e Under-sampling

e Under-sampling e C4.5Rules. Na Tabela 3 o śımbolo ↑ ao lado de uma abordagem representa

um resultado significativo em relação à abordagem que possui ao lado um śımbolo ↓.

Pode-se observar na Tabela 3 que há apenas um resultado significativo. Para o conjunto

de dados Satimage, a abordagem EA-C4.5Rules obteve um resultado significativo com 95% de

confiabilidade em relação à abordagem Under-sampling. Isto significa que a abordagem EA-

C4.5Rules é melhor do que a abordagem Under-sampling apenas para o conjunto de dados

Satimage.

Na Tabela 4 são apresentados os resultados obtidos com o indutor Ripper. Como descrito

previamente para a tabela anterior, na coluna Ripper é mostrado os resultados obtidos pelo

indutor Ripper sobre os dados desbalanceados; na coluna Under-sampling são apresentados

os resultados obtidos pelo Ripper sobre o conjunto de dados balanceado obtido pela técnica

under-sampling ; e, na coluna EA-Ripper são apresentados os resultados obtidos pela abordagem

h́ıbrida proposta. Pode ser observado que EA-Ripper apresenta o valor de AUC mais para todos

os conjuntos de dados.

Tabela 4: Valor da AUC com o indutor Ripper.
Data Set Ripper Under-sampling EA-Ripper
CMC 68.64 (02.27) 68.73 (03.18) 70.34 (02.08)
Pima 69.98 (02.21) ↓ 74.37 (04.16) 76.94 (02.21) ↑
Yeast 65.99 (02.13) ↓ 69.71 (02.39) 74.01 (02.55) ↑
Blood 63.34 (03.69) ↓ 67.87 (02.11) 73.42 (04.32) ↑
Vehicle 92.21 (02.55) 92.94 (03.06) 95.94 (01.54)
Flare 56.94 (02.25) ↓ ⇓ 68.98 (03.63) ⇑ 69.40 (04.37) ↑
Page-blocks 92.41 (01.31) ↓ ⇓ 95.10 (00.80) ⇑ ↓ 96.71 (00.47) ↑
Satimage 75.81 (01.60) ↓ ⇓ 86.97 (01.92) ⇑ ↓ 91.11 (01.11) ↑
Hoar-frost 80.97 (03.76) ↓ ⇓ 88.87 (02.32) ⇑ 92.05 (02.93) ↑
Oil-spill 68.05 (06.80) 77.68 (08.59) 82.66 (07.27)
Abalone 59.91 (02.49) ↓ ⇓ 75.30 (03.88) ⇑ 81.06 (02.84) ↑
Mammography 78.20 (02.68) ↓ ⇓ 88.73 (01.82) ⇑ 91.97 (02.68) ↑

Para verificar se a diferença dos resultados obtidos entre as abordagens (Ripper, Under-

sampling e EA-Ripper) é significativa ou não com 95% de confiabilidade, foi utilizado o teste de

hipótese k-fold cross-validated pairet t Dietterich (1997a). Neste teste comparou-se os resultados
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obtidos pela abordagem EA-Ripper e Ripper, EA-Ripper e Under-sampling e Under-sampling e

Ripper.

Na Tabela 4 os śımbolos ↑ e ⇑ ao lado da abordagem representa um resultado significativo

em relação à abordagem que possui ao lado um śımbolo ↓ ou ⇓. Por exemplo, pode ser observado

pela Tabela 4 que, para o conjunto de dados Satimage, há o śımbolo ↑ ao lado do resultado obtido

pela abordagem EA-Ripper e há o śımbolo ↓ ao lado dos resultados obtidos pelas abordagens

Under-sampling e Ripper. Isto significa que a abordagem EA-Ripper obteve um resultado es-

tatiticamente melhor, com com 95% de confiabilidade, em relação às abordagens Under-sampling

e Ripper. Ainda, para o mesmo conjunto de dados, o śımbolo ⇑ ao lado do resultado obtido pela

abordagem Under-sampling e o śımbolo ⇓ ao lado do resultado obtido pela abordagem Ripper

representa que a abordagem Under-sampling obteve um resultado estatisticamente melhor, com

com 95% de confiabilidade, em relação à abordagem Ripper.

Pode-se observar na Tabela 4 que a abordagem EA-Ripper obteve dois resultados sig-

nificativos em relação à abordagem Under-sampling para os conjuntos de dados Page-blocks e

Satimage. Ainda, a abordagem EA-Ripper obteve nove resultados significativos em relação à

abordagem Ripper para os conjuntos de dados Pima, Yeast, Blood, Flare, Page-blocks, Satim-

age, Hoar-frost, Abalone e Mammography. A abordagem Under-sampling obteve seis resultados

significativos em relação à abordagem Ripper para os conjuntos de dados Flare, Page-blocks,

Satimage, Hoar-frost, Abalone e Mammography.

Na Tabela 5 são apresentados os resultados obtidos com o indutor CN2. Na coluna CN2

são apresentados os resultados obtidos com o indutor CN2 executado sobre os dados desba-

lanceados; na coluna Under-sampling são apresentados os resultados obtidos pelo CN2 sobre o

conjunto de dados balanceado obtido pela técnica under-sampling ; e, na coluna EA-CN2 são

apresentados os resultados obtidos pela abordagem h́ıbrida. Os melhores resultados estão em

negrito. Como pode ser observado, EA-CN2 e Under-sampling apresentam cada um valor médio

de AUC mais alto para cinco dos conjuntos de dados, e CN2 para dois conjuntos de dados. No

entanto, EA-CN2 apresenta melhores resultados para conjuntos de dados com mais alto grau de

desbalanceamento.

Nos experimentos realizados com o indutor CN2 não foi utilizado o conjunto de dados

Yeast, como pode ser observado na Tabela 5. Isto porque os valores de AUC para os conjuntos
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de regras obtidos pelo CN2 foram em torno de 50.00, ou seja, não foi posśıvel aprender.

Tabela 5: Valor da AUC com o indutor CN2.
Conjunto de Dados CN2 Under-sampling EA-CN2
CMC 64.29 (02.35) ⇑ 65.33 (01.31) ↑ 58.33 (01.63) ↓ ⇓
Pima 78.81 (02.39) 78.77 (02.95) 77.64 (02.59)
Blood 63.37 (04.12) 66.05 (04.81) 65.90 (02.90)
Vehicle 95.97 (02.43) 96.56 (01.60) 96.65 (02.17)
Flare 61.16(04.19) 66.63 (03.67) 65.32 (02.81)
Page-blocks 96.12 (01.11) 95.42 (00.82) 97.08 (00.91)
Satimage 90.59 (00.83 90.67 (00.67) 89.97 (01.53)
Hoar-frost 91.08 (03.70) 92.59 (02.24) 92.81 (03.20)
Oil-Spill 84.25 (07.07) 82.83 (05.76) 81.73 (09.22)
Abalone 65.95 (02.41) 61.56 (06.69) 69.94 (02.74)
Mammography 87.05 (08.67) 90.60 (03.19) 91.57 (01.77)

Da mesma forma como descrito anteriormente, o teste de hipótese k-fold cross-validated

pairet t para verificar se a diferença dos resultados obtidos entre as abordagens (CN2, Under-

sampling e EA-CN2) é significativa ou não, com 95% de confiabilidade. Na Tabela 5 o śımbolo

↑ e ⇑ ao lado da abordagem representa um resultado significativo em relação à abordagem que

possui ao lado um śımbolo ↓ ou ⇓ .

Pode ser observado na Tabela 5 que a abordagem Under-sampling obteve um resultado

significativo em relação à abordagem EA-CN2 para o conjunto de dados CMC. A abordagem

CN2 também apresentou um resultado significativo em relação à abordagem EA-CN2 para o

conjunto de dados CMC.

Para analizar se há diferença estatisticamente significante entre as abordagens também

foi realizado o teste de Friedman1. O teste de Friedman foi executado com três hipóteses nulas

diferentes para comparar o desempenho das seguintes abordagens:

1. C4.5Rules, C4.5Rules com under-sampling e EA-C4.5Rules;

2. Ripper, Ripper com under-sampling e EA-Ripper;

3. CN2, CN2 com under-sampling e EA-CN2.

Quando a hipótese nula é rejeitada pelo teste de Friedman, com 95% de confiabilidade,

pode-se proceder com um teste pos-hoc para detectar quais diferenças entre as abordagens são
1O teste de Friedman é um teste não paramétrico equivalente ao teste de ANOVA para múltiplas

comparações. Ver Demšar (2006) para uma discussão mais detalhada e completa a respeito de testes
estat́ısticos em AM.
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significantes. Para isto, foi executado o teste Bonferroni-Dunn para comparações múltiplas como

um teste de controle.

Em relação ao desempenho da abordagem EA-C4.5Rules, a primeira hipótese nula não

foi rejeitada pelo teste de Friedman. Portanto, não é posśıvel apontar qualquer diferença entre

C4.5Rules, C4.5Rules com under-sampling e EA-C4.5Rules. Este resultado é claramente um

resultado negativo para a aboradagem EA-C4.5Rules. Entretanto, uma análise mais detalhada

dos resultados mostra que para a maioria dos conjuntos de dados mais desbalanceados, a abor-

dagem EA-C4.5Rules apresentou bom desempenho. Considerando os conjuntos de dados com

classe minoritária abaixo de 10% (aproximadamente) do número total de casos, isto é, os con-

juntos de dados Flare, Page-blocks, Satimage, Hoar-frost, Oil-spill, Abalone and Mammography,

EA-C4.5Rules sempre apresenta os valores mais altos para AUC. Há somente uma exceção, o

conjunto de dados Oil-spill, em que EA-C4.5Rules e Under-sampling apresentam o mesmo valor

AUC, mas Under-sampling possui variância menor.

A segunda hipótese nula foi rejeitada pelo teste de Friedman com 95% de confiança. Na

Figura 5 são mostrados os resultados do teste Bonferroni-Dunn utilizando a abordagem EA-

Ripper como teste de controle. Bonferroni-Dunn indica que a abordagem EA-Ripper é melhor

do que as abordagens Ripper e Ripper aliado a under-sampling com 95% de confiança.

EA-RipperUnder-sampling Ripper
1 2 3

Figura 5: Resultados do teste Bonferroni-Dunn para Ripper. A linha espessa marca o
intervalo de uma diferença cŕıtica com 95% de confiabilidade. A diferença cŕıtica é 0.91.

Em relação ao desempenho da abordagem EA-CN2, a terceira hipótese nula não foi re-

jeitada pelo teste de Friedman. Portanto, não é posśıvel apontar qualquer diferença entre CN2,

CN2 com under-sampling e EA-CN2.

5 Conclusão e Trabalhos Futuros

Neste relatório técnico foi descrita a abordagem h́ıbrida proposta em Milaré et al. (2009b) bem

como os experimentos realizados para avaliá-la publicados em Milaré et al. (2009a, 2010). A

abordagem proposta descrita busca resolver o problema de indução de regras de classificação
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em conjuntos de dados desbalanceados. Esta abordagem combina indutores simbólicos de AM

e algoritmos evolutivos. Nesta abordagem é utilizado um algoritmo evolutivo para realizar uma

busca mais extensiva sob o espaço de hipótese.

Na avaliação experimental utilizando os indutores C4.5Rules e Ripper os resultados obtidos

foram bastante promissores. A abordagem EA-Ripper apresentou resultados estatisticamente

significantes comparado às abordagens Ripper e Ripper com under-sampling para o teste de

Friedman. A Abordagem EA-C4.5Rules não obteve resultados estatisticamente significantes

quando comparado às abordagens C4.5Rules e C4.5Rules com under-sampling, mas mesmo assim

apresentou bons resultados.

Quando o indutor CN2 foi utilizado para gerar classificadores de conjuntos de dados balan-

ceados, os resultados obtidos não foram tão promissores quanto os resultados obtidos utilizando

os indutores C4.5rules e Ripper para gerar os classificadores dos conjuntos de dados balanceados.

Para alguns conjuntos de dados utilizados nos experimentos, os classificadores gerados pelo CN2

eram muito grandes, às vezes com mais de 100 regras. Nestes casos, optou-se por um tamanho

menor dos cromossomos (classificadores) do algoritmo evolutivo. Portanto, os classificadores

encontrados pela abordagem h́ıbrida, para muitos conjuntos de dados, são bem menores do que

os classificadores gerados pelo CN2 e pelo método Under-sampling, o que pode ter contribúıdo

com os resultados não tão bons obtidos pela abordagem h́ıbrida.

Como trabalhos futuros pretendemos investigar novas métricas para compor regras para

gerar um classificador. Estas métricas indicam quais regras devem disparar nos casos em que

múltiplas regras cobrem um exemplo. Estas métricas possuem uma influência direta sobre o

desempenho dos classificadores e novas métricas, projetadas para classes desbalanceadas, podem

potencialmente melhorar a classificação sobre conjuntos de dados desbalanceados.
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