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Resumo

H& um interesse crescente na aplicacao de algoritmos evolutivos para induzir regras de classifi-
cacao. Essa abordagem pode ajudar em areas que métodos classicos para indugao de regras nao
tém obtido tanto sucesso. Um exemplo é a inducao de regras de classificacdo em dominios des-
balanceados. Dados desbalanceados ocorrem quando algumas classes possuem um nimero bem
maior de exemplos se comparado a outras classes. Geralmente, em Aprendizado de Méquina
(AM) tradicional os indutores nao sao capazes de aprender na presenca de conjuntos de dados
desbalanceados. Estes indutores geralmente classificam todos os exemplos como sendo da classe
que possui 0 maior numero de exemplos. Neste relatério é descrita uma abordagem hibrida para
resolver o problema de indugao de regras de classificacao em dominios desbalanceados, bem como
os experimentos realizados para avalid-la. Nesta abordagem hibrida sao criados varios conjuntos
de dados balanceados com todos os exemplos da classe minoritaria e uma amostra randémica de
exemplos da classe majoritaria. Esses conjuntos de dados balanceados sao fornecidos a sistemas
de AM tradicionais, que produzem como saida conjuntos de regras. Os conjuntos de regras sao
combinados em um repositério de regras e um algoritmo evolutivo é utilizado para selecionar
algumas regras deste repositorio para construir um classificador. A abordagem descrita possui
vantagem em relacao a métodos de under-sampling desde que reduz a quantidade de infor-
magcao descartada, e possui vantagem em relacdo a métodos de over-sampling, desde que evita
overfitting. Esta abordagem foi experimentalmente analizada e os resultados dos experimentos
mostram uma melhora no desempenho de classificagdo medido com a area abaixo da curva ROC

(Receiver Operating Characteristic).
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1 Introducao

H&a um interesse crescente na aplicacao de algoritmos evolutivos para induzir regras de classifi-
cacao. Essa abordagem pode ajudar em &reas nas quais os métodos classicos para indugao de
regras nao tém obtido tanto sucesso. Um exemplo é a inducao de regras de classificagao em

dominios desbalanceados.

Dados desbalanceados ocorrem quando algumas classes possuem um numero bem maior
de exemplos se comparado a outras classes. Geralmente, em Aprendizado de Méquina (AM)
tradicional os indutores nao sao capazes de aprender na presenca de conjuntos de dados desba-
lanceados. Estes indutores geralmente classificam todos os exemplos como sendo da classe que
possui o maior nimero de exemplos. Entretanto, em muitos dominios, as classes minoritarias
sao as classes de maior interesse, as quais sao atribuidos os custos mais altos. Por exemplo, na
deteccao de transagoes fraudulentas em cartoes de crédito e na telefonia Phua et al. (2004), no
diagnéstico de doencgas raras Cohena et al. (2006) e na predigao de eventos climaticos Bucene
(2008), classificar erroneamente exemplos da classe minoritaria é mais caro do que classificar
erroneamente um exemplo da classe majoritaria. Um classificador que simplesmente classifica

todos os exemplos como sendo da classe majoritaria é inutil.

Em Milaré et al. (2009b) é proposta uma abordagem hibrida para resolver o problema de
inducao de regras de classificacao em dominios desbalanceados. Nessa abordagem, o problema
de aprender com classes desbalanceadas é visto como um problema de busca, e portanto, um
algoritmo evolutivo é utilizado para melhorar a busca no espaco de hipéteses. A abordagem pro-
posta cria varios conjuntos de dados balanceados com todos os exemplos da classe minoritaria e
uma amostra randomica de exemplos da classe majoritaria. Esses conjuntos de dados balancea-
dos séo fornecidos a sistemas de AM tradicionais, que produzem como saida conjuntos de regras.
Os conjuntos de regras sao combinados em um repositério de regras e um algoritmo evolutivo é

utilizado para selecionar algumas regras desse repositério para construir um classificador.

O método proposto em Milaré et al. (2009b) utiliza a técnica under-sampling para criar
varios conjuntos de dados balanceados. Under-sampling elimina os exemplos da classe ma-
joritaria para criar conjuntos de dados balanceados, e portanto, pode descartar dados tteis que
poderiam ser importantes para o processo de inducdo. A abordagem hibrida ndo possui esta

limitacao pois muitas amostras de dados sao criadas e, portanto, aumenta a probabilidade de



todos os dados serem utilizados no aprendizado. Outra técnica utilizada para tratar dados des-
balanceados é over-sampling. Over-sampling artificialmente aumenta o nimero de exemplos da
classe minoritaria. O maior problema desta técnica é que ela supostamente aumenta a probabi-
lidade de ocorréncia de overfitting, ja que faz muitas cépias dos exemplos da classe minoritéria.
O método proposto evita overfitting pois limita o nimero de regras de cada classificador. Os
classificadores criados possuem aproximadamente o mesmo niimero de regras dos classificadores

individuais induzidos a partir dos dados balanceados.

A abordagem hibrida proposta em Milaré et al. (2009b) foi experimentalmente analizada
sobre alguns conjuntos de dados desbalanceados utilizando inicialmente dois sistemas de AM
bastante conhecidos, C4.5Rules Quinlan (1988) e Ripper Cohen (1995) e os resultados foram
publicados em Milaré et al. (2010). Posteriormente, os experimentos foram estendidos com a
utilizagdo do CN2 Clark and Niblett (1989) e os resultados foram publicados em Milaré et al.
(2009a). A principal métrica utilizada para avaliar os resultados foi a drea abaixo da curva ROC
(Receiver Operating Characteristic), a AUC (Area Under the ROC Curve) Fawcett (2004). O
uso da métrica AUC é altamente recomendado em experimentos com classes desbalanceadas,
pois métricas que dependem dos custos e distribuicao das classes, tal como acuracia e taxa de

erro, podem enganar em dominios desbalanceados.

O objetivo deste relatorio técnico é descrever a abordagem proposta em Milaré et al.

(2009b), bem como os experimentos realizados para a sua avaliagao.

Este trabalho esta organizado da seguinte forma: na Segdo 2 s@o apresentados alguns
trabalhos relacionados; na Secao 3 é descrita a abordagem proposta; na Secao 4 sao descritos
os experimentos realizados; e finalmente, na Secao 5 algumas conclusoes e trabalhos futuros sao

apresentados.

2 Trabalhos Relacionados

Nesta secao sao descritos alguns trabalhos relacionados a classes desbalanceadas e métodos para

combinar classificadores.



2.1 Classes Desbalanceadas

A precisao de classificacdo de muitos algoritmos de AM é altamente afetada pela distribuicao
dos exemplos entre as classes. Como muitos sistemas de aprendizado sao projetados para traba-
lhar com conjuntos de dados balanceados, eles geralmente falham na inducao de classificadores

capazes de predizer a classe minoritaria.

A investigagdo de alternativas para trabalhar de forma eficiente com problemas que en-
volvem classes desbalanceadas é uma area importante de pesquisa, pois conjuntos de dados des-
balanceados podem ser encontrados em diversos dominios. Por exemplo, na detecgao de fraudes
em chamadas telefonicas e em transagoes de cartao de crédito Fawcett and Provost (1997); Stolfo
et al. (1997); Phua et al. (2004), o nimero de transagoes legitimas é geralmente muito maior do
que o nimero de transagoes fraudulentas; em anélise de risco em seguro Pednault et al. (2000),
poucos clientes requisitam o prémio de seguro em um determinado intervalo de tempo; e em
marketing direto Ling and Li (1998), o retorno é geralmente muito pequeno (em torno de 1%)

para a maioria das campanhas de marketing.

Muitos trabalhos tém analizado o problema de aprender sobre conjunto de dados desba-
lanceados (por exemplo, Pazzani et al. (1994); Ling and Li (1998); Kubat and Matwin (1997);
Fawcett and Provost (1997); Kubat et al. (1998a); Japkowicz and Stephen (2002); Batista et al.
(2004); Weiss (2004)). Entre as principais estratégias utilizadas por estes trabalhos, trés abor-

dagens se destacam:

e Aplicar diferentes custos para classificacoes incorretas: os custos mais altos sao aplicados

as classes minoritarias;

o Under-sampling: balancear artificialmente os dados de treinamento eliminando exemplos

da classe majoritaria;

e QOver-sampling: balancear artificialmente os dados de treinamento replicando exemplos da

classe minoritaria.

A abordagem hibrida proposta em Milaré et al. (2009b) utiliza under-sampling como um
passo intermediario para criar muitos conjuntos de dados balanceados. Outros trabalhos utilizam

uma abordagem semelhante para tratar classes desbalanceadas. Por exemplo, Chan and Stolfo



(1998) divide os exemplos da classe majoritdria em muitos subconjuntos nao sobrepostos com
aproximadamente o mesmo numero de exemplos da classe minoritaria. Cada subconjunto é
combinado com os exemplos da classe minoritaria para formar conjuntos de dados balanceados
que sao fornecidos a um algoritmo de aprendizado. Os classificadores obtidos sao integrados
utilizando stacking Wolpert (1992). Uma abordagem similar é proposta em Liu et al. (2009), em
que Adaboost Freund and Schapire (1997) integra a saida de muitos classificadores induzidos a

partir de conjuntos de dados balanceados tratados com under-sampling.

A abordagem hibrida proposta difere de trabalhos previamente publicados, pois o interesse
¢ criar classificadores simbdlicos, isto é, classificadores que podem ser facilmente interpretados
por humanos. Embora ensembles possam ser construidos a partir de diversos classificadores
simbdlicos individuais, o classificador final nao pode ser considerado um classificador simbdlico,

pois este classificador nao pode ser facilmente interpretado.

2.2 Combinando Classificadores

Muitos trabalhos na literatura descrevem alternativas diferentes para combinar classificadores.
Uma aboradagem direta para combinar classificadores é utilizar ensembles Opitz and Maclin
(1999); Dietterich (1997b). Um ensemble é composto por um conjunto de classificadores in-
dividuais cujas predicoes sao combinadas para determinar a classe a que pertence um novo
exemplo. Geralmente, um ensemble é mais preciso que seus classificadores individuais. Apesar
do ganho em desempenho, que geralmente é obtido quando se utiliza ensembles, a combinagao
de classificadores simbdlicos resulta em um classificador final nao simbélico. Dois exemplos bem

conhecidos de ensemble sao Bagging e Booting.

Bagging Breiman (1996) é a técnica mais antiga e simples para criar um ensemble de
classificadores. Essa técnica utiliza voto majoritdario para combinar predicoes de classificadores

individuais e aplica a classe mais frequentemente predita como a classificagao final.

Diferente de Bagging, em Boosting Schapire (1990), cada exemplo de treinamento é as-
sociado a um peso. Este peso esta relacionado com a taxa de acerto da hipdétese induzida para
aquele exemplo particular. Uma hipdtese é induzida por iteracao e os pesos associados com cada

exemplo deve ser modificado.

Uma segunda abordagem para combinar classificadores é integrar o conhecimento gerado
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por diferentes classificadores em uma tnica base de conhecimento e, entao, utilizar um método
de selecao de regras para criar um classificador. Em Prati and Flach (2005), os autores pro-
puseram um algoritmo denominado ROCCER para selecionar regras baseado no desempenho das
regras sobre o espago ROC. Outra técnica que utiliza uma abordagem semelhante é o algoritmo
GARSS Batista et al. (2006). GARSS utiliza um algoritmo evolutivo para selecionar regras que
maximizam a AUC. Ambos, ROCCER e GARSS, sao utilizados no contexto de classificacao
associativa. Outros trabalhos que utilizam algoritmo evolutivo para selecao de regras que com-
binam conhecimento de uma grande base de conhecimento podem ser encontrados em Ghosh

and Nath (2004); Bernardini et al. (2008).

A metodologia geral de induzir diversos classificadores de varias amostras de dados e
integrar o conhecimento destes classificadores em um classificador final foi inicialmente proposta
por Fayyad, Djorgovski, e Weir Fayyad et al. (1996). Esta metodologia foi implementada no
sistema RULER e utilizada no projeto SKICAT, cujo objetivo foi catalogar e analizar objetos
de imagens digitalizadas do céu. De acordo com os autores, essa metodologia foi capaz de gerar
um conjunto de regras robusto. Além disso, o classificador induzido foi mais preciso do que
astronomos para classificar objetos césmicos de fotografias. A metodologia adotada no sistema
RULER foi estendida no sistema XRULER (eXtended RULER) Baranauskas and Monard (2003)

para utilizar conhecimento induzido de diferentes algoritmos.

3 Abordagem Proposta

A abordagem proposta em Milaré et al. (2009b) utiliza um algoritmo evolutivo para selecionar
regras com o objetivo de maximizar a AUC para problemas que envolvam classes desbalanceadas.
Algoritmos evolutivos sao algoritmos de busca baseados na selecao natural e genética Goldberg
(1989). Seu funcionamento envolve um conjunto de solugdes potenciais (populagao), geralmente
codificadas como uma sequéncia de bits (cromossomos). A evolugao é realizada pela aplicagao
de um conjunto de transformacoes (geralmente, os operadores genéticos crossover e mutagao),

e avaliacao da qualidade (fitness) das solugoes.

Como previamente descrito, a abordagem é baseada na técnica under-sampling. Entre-

tanto, para reduzir a probabilidade de perda de informacao quando alguns exemplos sao descar-



tados, a abordagem cria diversos conjuntos de treinamento. Dado um conjunto de treinamento
7 =T"UT ", noqual 7T é o conjunto de exemplos positivos (minoritdrio), e 7~ é o conjunto
de exemplos negativos (majoritdrio), n amostras randoémicas 7, ,...,7, sdo criadas de 7.

Cada amostra randomica 7, ¢ uma amostra sem reposicao de 7~ e possui o mesmo nimero de

exemplos do conjunto de exemplos positivos, isto é, |7;7| = |T1], 1 <i < n.

Conjuntode Treinamento
Desbalanceado

I=7"UT~-

Exemplos Positivos
(minoritario)

T+

Exemplos Negativos
(majoritario)

Conjuntode Treinamento
Balanceado

7,=T*UT,

Conjunto de Treinamento
Balanceado

L,=T'UT,

Conjunto de Treinamento
Balanceado

T,=T'UT, S

Figura 1: Abordagem utilizada para criar os conjuntos de treinamento balanceados.

No total, n conjuntos de treinamento balanceados T} sao criados pela juncao de 7 com
cada 7., isto é, 7, = TT U7, , 1 < i < n, como pode ser observado na Figura 1. O valor
do parametro n nos experimentos foi definido igual a 100. Os conjuntos de regras foram in-
duzidos de cada conjunto de treinamento 7;, como mostrado na Figura 2. As regras de todos
os conjuntos de regras de cada indutor foram integradas em um tunico repositério de regras, e
as regras repetidas foram descartadas. Nos experimentos realizados para avaliar a abordagem
proposta, os algoritmos de AM utilizados inicialmente para induzir os conjuntos de regras foram
C4.5Rules Quinlan (1988) e Ripper Cohen (1995) e posteriormente os experimentos foram es-

tendidos com a utilizacdo do CN2 Clark and Niblett (1989).

O repositério de regras é fornecido como entrada ao algoritmo evolutivo. Uma chave

priméria (um nimero natural) é associada com cada regra do repositério. Portanto, cada regra
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- Conjunto de Regras

Conjuntode Treinamento

Balanceado .
Ripper - Conjunto de Regras

T,=T*UT

- Conjunto de Regras

Figura 2: Inducao dos conjuntos de regras.

pode ser acessada independentemente por esta chave. O método utiliza a abordagem Pitts-
burgh Smith (1980) para codificar classificadores como cromossomos. A abordagem de Pitts-
burgh é caracterizada por utilizar um classificador como um individuo Freitas (2002). Portanto,
a populacao é um conjunto de classificadores. Entao, neste trabalho, um vetor de chaves é uti-
lizado para representar um cromossomo, isto é, um conjunto de regras ¢ interpretado como um
classificador, como é mostrado na Figura 3. Na implementacao utilizada, a populacao inicial
¢é randomicamente composta por 40 cromossomos. A funcado de avaliacao utilizada é a métrica
AUC medida sobre os exemplos de treinamento. O método de selecao é a selecao proporcional,
no qual o nimero de vezes que um cromossomo é esperado reproduzir é proporcional ao seu
fitness. Um operador de crossover simples foi aplicado com probabilidade de 0.4. O operador de
mutacao altera o valor de elementos do cromossomo randomicamente selecionados, ou seja, uma
regra randomicamente selecionada do cromossomo € trocada por outra regra também randomi-
camente selecionada da base de regras. O operador de mutacao foi aplicado com probabilidade
de 0.1. As taxas com que os operadores de mutagao e crossover sao aplicados foram escolhidas
baseadas na experiéncia prévia com algoritmos evolutivos Milaré et al. (2004). O ntmero de
geracoes ¢ limitado em 20. Finalmente, a implementacao utiliza um operador de elitismo para
reposicao da populagao. De acordo com este operador, o melhor cromossomo de cada populacao

¢é preservado para a proxima geracao.

Como mencionado anteriormente, cada cromossomo representa um classificador. Tipica-

mente, a abordagem de Pittsburg permite individuos de tamanhos variaveis que podem ter seus



if <complex>then <class>

if <ccomplex>then <class>

if <ccomplex>then <class>

if <ccomplex>then <class>

if <ccomplex>then <class>

if <ccomplex>then <class>

alunlplw|vk|lo

if ccomplex> then <class>

if <complex> then <class>

populagdo cromossomo .
repositdrio de regras

Figura 3: Abordagem utilizada para codificar os classificadores como cromossomos.

tamanhos modificados pela aplicacao de crossover de dois pontos. Na abordagem proposta, o
nimero de regras de cada cromossomo foi fixado para evitar overfitting. Portanto, na imple-
mentacgao realizada é permitido apenas crossover simples, ou seja, de apenas um ponto. Como
a funcdo de fitness é a métrica AUC sobre o conjunto de treinamento e se fosse permitido que
o cromossomo crescesse durante a execucao do algoritmo evolutivo, os cromossomos poderiam
possuir muitas regras e nao generalizar bem. Nos experimentos, o nimero de regras de cada
cromossomo difere para cada conjunto de dados. Este nimero é aproximadamente o nimero
médio de regras obtidas pelos classificadores induzidos sobre cada conjunto 7;. Quando este
numero é grande, optou-se por limitar o tamanho do cromossomo em no maximo 40 regras por

questoes de tempo de processamento.

4 Avaliacao Experimental

Como descrito anteriormente, alguns experimentos foram realizados, utilizando os sistemas de
AM C4.5Rules Quinlan (1988), Ripper Cohen (1995) e CN2 Clark and Niblett (1989), para
avaliar a abordagem hibrida proposta. Os experimentos foram realizados sob nove conjuntos
de dados de benchmark coletados do repositério UCI Asuncion and Newman (2007), e trés
conjuntos de dados do “mundo real”: Mammography Chawla et al. (2002); Oil-spill Kubat
et al. (1998b); and Hoar-frost Bucene (2008). Esses conjuntos de dados s@o relacionados a

problemas de classificacdo de diferentes dominios de aplicagdo. Na Tabela 1 sdo resumidas



as principais caracteristicas dos conjuntos de dados. Essas caracteristicas sao: Identificador —
identificador do conjunto de dados utilizado no texto; #Exemplos — ntimero total de exem-
plos; #Atributos(quanti., quali.) — nimero de atributos e nimero de atributos quantitativos e
qualitativos; Classes (min., maj.) — rétulo das classes minoritdria e majoritria; e Classes %
(min., maj.) — porcentagem das classes minoritdria e majoritdria. Os conjuntos de dados na
Tabela 1 estao listados em ordem crescente de grau de desbalanceamento. Conjuntos de dados
com mais de duas classes foram transformados em problemas de classificagao binario tornando
uma das classes como classe minoritdria (como indicado na coluna Classes) e concatenando as

outras classes como classe majoritaria.

Tabela 1: Descricao dos conjuntos de dados.

Identificador #Exemplos # Atributos Classes Classes %
(quanti., quali.) (min., maj.) (min., maj.)
CMC 1473 9(2,7) (1, restante) (42.73%, 57.27%)
Pima 768 8 (8, 0) (1, 0) (34.89%, 65.11%)
Yeast 1484 8 (8,0) (NUC, remaining) (28.90%, 71.10%)
Blood 748 4 (4,0) (1, 0) (24.00%, 76.00%)
Vehicle 946 18 (18, 0) (van, restante) (23.89%, 76.11%)
Flare 1066 10 (2, 8) (C-class, restante)  (17.07%, 82.93%)
Page-blocks 5473 10 (10, 0) (restante, text)  (10.22%, 89.78%)
Satimage 6435 36 (36, 0) (4, restante) (9.73%, 90.27%)
Hoar-frost 3044 236 (200, 36)  (positive, negative)  (6.11%, 93.89%)
Oil-Spill 037 48 (48, 0) (2, 1) (4.38%, 95.62%)
Abalone 4177 8 (7,1) (15, restante) (2.47%, 97.53%)
Mammography 11183 6 (6,0) 2, 1) (2.32%, 97.68%)

Cada um dos doze conjuntos de dados foi dividido em 10 pares de conjuntos de treinamento
e teste utilizando amostragem randomica estratificada. Os exemplos de treinamento sao 75% do
conjunto de dados original e o conjunto de teste 25%. Dentro de cada partigao, 100 conjuntos
de dados balanceados foram criados com todos os exemplos da classe minoritaria e uma amostra

randomica dos exemplos da classe majoritdria, como descrito previamente.

Esses conjuntos de dados balanceados foram fornecidos aos sistemas de AM C4.5Rules,
Ripper e CN2. Estes algoritmos foram executados com seus parametros default. As regras
de classificacao geradas para cada conjunto de treinamento e para cada um dos algoritmos de
AM foram combinadas em um repositério de regras. Um algoritmo evolutivo foi utilizado para
selecionar um subconjunto de regras e construir um classificador a partir do repositério de regras,

como mostrado na Figura 4.



Conjunto de Dados
Desbalanceado

Amostragem
Randdmica
Estratificada

Particdo 1 Particdo 2 Particdo 10

Conjunto de
Treinamento
Desbalanceado

Conjunto de ] Conjunto de
Treinamento Conjunto Treinamento
Desbalanceado S de Teste Desbalanceado

Conjunto Conjunto

de Teste de Teste

Conjunto de Conjunto de Conjunto de
Treinamento Treinamento Treinamento
Balanceado T, Balanceado T, T Balanceado Tyg
@utor ' @utor ’ @utor '
Conjunto de Regras Conjunto de Regras Conjunto de Regras
Repositdrio
de Regras

Algoritmo
Evolutivo

Classificador

Figura 4: Experimento realizado.

Como descrito na Secao 3, o tamanho do cromossomo, isto é, o niimero de regras de
um classificador individual foi definido como o tamanho médio dos classificadores gerados pelos
indutores C4.5Rules, Ripper e CN2. Entretanto, quando o tamanho médio era muito grande,
fato que ocorreu para os conjuntos de regras gerados pelo indutor CN2, o tamanho dos individuos
(cromossomos) foi limitado a no maximo 40 por questoes de tempo de processamento. A Tabela 2

mostra o tamanho dos cromossomos utilizados pelo algoritmo evolutivo para cada combinacao
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de conjunto de dados e indutor.

Tabela 2: Tamanho dos cromossomos.

Conjunto de Dados C4.5Rules Ripper CN2
CMC 20 8 20
Pima 8 4 20
Yeast 10 4 20
Blood 4 4 20
Vehicle 12 6 12
Flare 8 4 20
Page-blocks 15 10 20
Satimage 20 6 40
Hoar-frost 10 10 24
Oil-spill 6 4 10
Abalone 20 6 40
Mammography 10 6 20

Na Tabela 3 sao apresentados os resultados obtidos com o indutor C4.5Rules. Todos os
resultados sao valores médios de AUC calculados sobre os 10 pares de conjuntos de treinamento
e teste. Os resultados estao divididos em trés colunas. Na coluna C4.5Rules sao apresentados os
resultados obtidos com o indutor C4.5Rules executado sobre os dados desbalanceados; na coluna
Under-sampling sao apresentados os resultados obtidos pelo C4.5Rules sobre o conjunto de dados
balanceado obtido pela técnica under-sampling; e, na coluna EA-C4.5Rules sao apresentados os
resultados obtidos pela abordagem hibrida proposta. Os melhores resultados estao em negrito.
Como pode ser observado, EA-C4.5Rules apresenta valor médio de AUC mais alto para oito dos

doze conjuntos de dados.

Tabela 3: Valor da AUC com o indutor C4.5Rules.

Data Set C4.5Rules Under-sampling EA-C4.5Rules
CMC 71.78 (01.39) 70.39 (01.97) 68.77 (02.87)
Pima 74.28 (04.13)  75.80 (01.40)  77.06 (03.52)
Yeast 74.98 (02.09) 73.69 (02.20) 76.47 (02.83)
Blood 71.22 (02.71) 69.04 (03.13) 71.01 (03.58)
Vehicle 96.96 (01.62) 95.89 (01.61) 96.22 (02.33)
Flare 72.09 (03.44) 72.70 (04.15) 69.71 (04.33)
Page-blocks 97.26 (01.42) 96.97 (00.84) 97.56 (01.09)
Satimage 86.27 (02.69)  87.96 (01.33)]  90.94 (01.30) 1
Hoar-frost 86.37 (04.82) 89.58 (02.24) 92.08 (02.98)
Oil-spill 77.89 (10.48)  84.03 (04.31) 84.03 (08.06)
Abalone 77.93 (02.23) 78.31 (02.27) 80.95 (00.91)
Mammography 87.20 (03.70) 89.43 (02.55) 90.30 (02.87)
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Para verificar se a diferenca dos resultados obtidos entre as abordagens (C4.5Rules, Under-



sampling e EA-C4.5Rules) é significativa ou nao com 95% de confiabilidade, foi utilizado o
teste de hipdtese k-fold cross-validated pairet t Dietterich (1997a). Neste teste comparou-se os
resultados obtidos pela abordagem EA-C4.5Rules e C4.5Rules, EA-C4.5Rules e Under-sampling
e Under-sampling e C4.5Rules. Na Tabela 3 o simbolo T ao lado de uma abordagem representa

um resultado significativo em relacao a abordagem que possui ao lado um simbolo |.

Pode-se observar na Tabela 3 que ha apenas um resultado significativo. Para o conjunto
de dados Satimage, a abordagem EA-C4.5Rules obteve um resultado significativo com 95% de
confiabilidade em relagdo & abordagem Under-sampling. Isto significa que a abordagem EA-
C4.5Rules é melhor do que a abordagem Under-sampling apenas para o conjunto de dados

Satimage.

Na Tabela 4 sao apresentados os resultados obtidos com o indutor Ripper. Como descrito
previamente para a tabela anterior, na coluna Ripper é mostrado os resultados obtidos pelo
indutor Ripper sobre os dados desbalanceados; na coluna Under-sampling sao apresentados
os resultados obtidos pelo Ripper sobre o conjunto de dados balanceado obtido pela técnica
under-sampling; e, na coluna EA-Ripper sdo apresentados os resultados obtidos pela abordagem
hibrida proposta. Pode ser observado que EA-Ripper apresenta o valor de AUC mais para todos

os conjuntos de dados.

Tabela 4: Valor da AUC com o indutor Ripper.

Data Set Ripper Under-sampling ~ EA-Ripper
CMC 68.64 (02.27) 68.73 (03.18) 70.34 (02.08)
Pima 69.98 (02.21) | 74.37 (04.16) 76.94 (02.21) 7
Yeast 65.99 (02.13) | 69.71 (02.39) 74.01 (02.55) T
Blood 63.34 (03.69) | 67.87 (02.11) 73.42 (04.32) 71
Vehicle 92.21 (02.55) 92.94 (03.06) 95.94 (01.54)
Flare 56.94 (02.25) | || 68.98 (03.63) 69.40 (04.37) 1
Page-blocks 92.41 (01.31) | § 95.10 (00.80) 1+ | 96.71 (00.47) 7
Satimage 75.81 (01.60) | § 86.97 (01.92) 9 | 91.11 (01.11) 7
Hoar-frost 80.97 (03.76) | | 88.87 (02.32) f 92.05 (02.93) 1
Oil-spill 68.05 (06.80) 77.68 (08.59) 82.66 (07.27)
Abalone 59.91 (02.49) | | 75.30 (03.88) 1 81.06 (02.84) 1
Mammography 78.20 (02.68) | || 88.73 (01.82) 91.97 (02.68) 1

Para verificar se a diferenga dos resultados obtidos entre as abordagens (Ripper, Under-
sampling e EA-Ripper) é significativa ou ndo com 95% de confiabilidade, foi utilizado o teste de

hipétese k-fold cross-validated pairet t Dietterich (1997a). Neste teste comparou-se os resultados
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obtidos pela abordagem EA-Ripper e Ripper, EA-Ripper e Under-sampling e Under-sampling e

Ripper.

Na Tabela 4 os simbolos T e 1} ao lado da abordagem representa um resultado significativo
em relacao a abordagem que possui ao lado um simbolo | ou |}. Por exemplo, pode ser observado
pela Tabela 4 que, para o conjunto de dados Satimage, héd o simbolo T ao lado do resultado obtido
pela abordagem EA-Ripper e ha o simbolo | ao lado dos resultados obtidos pelas abordagens
Under-sampling e Ripper. Isto significa que a abordagem EA-Ripper obteve um resultado es-
tatiticamente melhor, com com 95% de confiabilidade, em relacao as abordagens Under-sampling
e Ripper. Ainda, para o mesmo conjunto de dados, o simbolo 1} ao lado do resultado obtido pela
abordagem Under-sampling e o simbolo || ao lado do resultado obtido pela abordagem Ripper
representa que a abordagem Under-sampling obteve um resultado estatisticamente melhor, com

com 95% de confiabilidade, em relagao a abordagem Ripper.

Pode-se observar na Tabela 4 que a abordagem EA-Ripper obteve dois resultados sig-
nificativos em relagdo a abordagem Under-sampling para os conjuntos de dados Page-blocks e
Satimage. Ainda, a abordagem EA-Ripper obteve nove resultados significativos em relagao a
abordagem Ripper para os conjuntos de dados Pima, Yeast, Blood, Flare, Page-blocks, Satim-
age, Hoar-frost, Abalone e Mammography. A abordagem Under-sampling obteve seis resultados
significativos em relagao a abordagem Ripper para os conjuntos de dados Flare, Page-blocks,

Satimage, Hoar-frost, Abalone e Mammography.

Na Tabela 5 sdo apresentados os resultados obtidos com o indutor CN2. Na coluna CN2
sao apresentados os resultados obtidos com o indutor CN2 executado sobre os dados desba-
lanceados; na coluna Under-sampling sdo apresentados os resultados obtidos pelo CN2 sobre o
conjunto de dados balanceado obtido pela técnica under-sampling; e, na coluna EA-CN2 séao
apresentados os resultados obtidos pela abordagem hibrida. Os melhores resultados estao em
negrito. Como pode ser observado, EA-CN2 e Under-sampling apresentam cada um valor médio
de AUC mais alto para cinco dos conjuntos de dados, e CN2 para dois conjuntos de dados. No
entanto, EA-CN2 apresenta melhores resultados para conjuntos de dados com mais alto grau de

desbalanceamento.

Nos experimentos realizados com o indutor CN2 nao foi utilizado o conjunto de dados

Yeast, como pode ser observado na Tabela 5. Isto porque os valores de AUC para os conjuntos
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de regras obtidos pelo CN2 foram em torno de 50.00, ou seja, nao foi possivel aprender.

Tabela 5: Valor da AUC com o indutor CN2.

Conjunto de Dados CN2 Under-sampling ~ EA-CN2

CMC 64.29 (02.35) 1 65.33 (01.31) | 58.33 (01.63) | {
Pima 78.81 (02.39) 78.77 (02.95) 77.64 (02.59)
Blood 63.37 (04.12)  66.05 (04.81)  65.90 (02.90)
Vehicle 95.97 (02.43) 96.56 (01.60) 96.65 (02.17)
Flare 61.16(04.19)  66.63 (03.67)  65.32 (02.81)
Page-blocks 96.12 (01.11)  95.42 (00.82)  97.08 (00.91)
Satimage 90.59 (00.83  90.67 (00.67)  89.97 (01.53)
Hoar-frost 91.08 (03.70) 92.59 (02.24) 92.81 (03.20)
Oil-Spill 84.25 (07.07) 82.83 (05.76)  81.73 (09.22)
Abalone 65.95 (02.41) 6156 (06.69)  69.94 (02.74)
Mammography 87.05 (08.67) 90.60 (03.19) 91.57 (01.77)

Da mesma forma como descrito anteriormente, o teste de hipotese k-fold cross-validated
pairet t para verificar se a diferenca dos resultados obtidos entre as abordagens (CN2, Under-
sampling e EA-CN2) é significativa ou nao, com 95% de confiabilidade. Na Tabela 5 o simbolo
T e ft ao lado da abordagem representa um resultado significativo em relacao a abordagem que

possui ao lado um simbolo | ou |} .

Pode ser observado na Tabela 5 que a abordagem Under-sampling obteve um resultado
significativo em relacdo a abordagem EA-CN2 para o conjunto de dados CMC. A abordagem
CN2 também apresentou um resultado significativo em relacao a abordagem EA-CN2 para o

conjunto de dados CMC.

Para analizar se ha diferenca estatisticamente significante entre as abordagens também
foi realizado o teste de Friedman'. O teste de Friedman foi executado com trés hipéteses nulas

diferentes para comparar o desempenho das seguintes abordagens:

1. C4.5Rules, C4.5Rules com under-sampling e EA-C4.5Rules;
2. Ripper, Ripper com under-sampling e EA-Ripper;

3. CN2, CN2 com under-sampling e EA-CN2.

Quando a hipdtese nula é rejeitada pelo teste de Friedman, com 95% de confiabilidade,

pode-se proceder com um teste pos-hoc para detectar quais diferengas entre as abordagens sao

10O teste de Friedman é um teste ndo paramétrico equivalente ao teste de ANOVA para miiltiplas
comparagoes. Ver DemsSar (2006) para uma discussao mais detalhada e completa a respeito de testes
estatisticos em AM.
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significantes. Para isto, foi executado o teste Bonferroni-Dunn para comparacoes multiplas como

um teste de controle.

Em relacdo ao desempenho da abordagem EA-C4.5Rules, a primeira hipdétese nula nao
foi rejeitada pelo teste de Friedman. Portanto, nao é possivel apontar qualquer diferenca entre
C4.5Rules, C4.5Rules com under-sampling e EA-C4.5Rules. Este resultado é claramente um
resultado negativo para a aboradagem EA-C4.5Rules. Entretanto, uma andlise mais detalhada
dos resultados mostra que para a maioria dos conjuntos de dados mais desbalanceados, a abor-
dagem EA-C4.5Rules apresentou bom desempenho. Considerando os conjuntos de dados com
classe minoritaria abaixo de 10% (aproximadamente) do nimero total de casos, isto é, os con-
juntos de dados Flare, Page-blocks, Satimage, Hoar-frost, QOil-spill, Abalone and Mammography,
EA-C4.5Rules sempre apresenta os valores mais altos para AUC. H4 somente uma excecio, o
conjunto de dados Oil-spill, em que EA-C4.5Rules e Under-sampling apresentam o mesmo valor

AUC, mas Under-sampling possui variancia menor.

A segunda hipétese nula foi rejeitada pelo teste de Friedman com 95% de confianca. Na
Figura 5 sdo mostrados os resultados do teste Bonferroni-Dunn utilizando a abordagem EA-
Ripper como teste de controle. Bonferroni-Dunn indica que a abordagem EA-Ripper é melhor

do que as abordagens Ripper e Ripper aliado a under-sampling com 95% de confianga.

1 2 3
Y — 0 —
Un%ér—fs{éﬁ%aﬁng ‘ Ripper

Figura 5: Resultados do teste Bonferroni-Dunn para Ripper. A linha espessa marca o
intervalo de uma diferenga critica com 95% de confiabilidade. A diferenca critica é 0.91.

Em relacdo ao desempenho da abordagem EA-CN2, a terceira hipdtese nula nao foi re-
jeitada pelo teste de Friedman. Portanto, ndo é possivel apontar qualquer diferenca entre CN2,

CN2 com under-sampling e EA-CN2.

5 Conclusao e Trabalhos Futuros

Neste relatério técnico foi descrita a abordagem hibrida proposta em Milaré et al. (2009b) bem
como os experimentos realizados para avalid-la publicados em Milaré et al. (2009a, 2010). A

abordagem proposta descrita busca resolver o problema de indugao de regras de classificacao
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em conjuntos de dados desbalanceados. Esta abordagem combina indutores simbdlicos de AM
e algoritmos evolutivos. Nesta abordagem ¢é utilizado um algoritmo evolutivo para realizar uma

busca mais extensiva sob o espaco de hipotese.

Na avaliacao experimental utilizando os indutores C4.5Rules e Ripper os resultados obtidos
foram bastante promissores. A abordagem EA-Ripper apresentou resultados estatisticamente
significantes comparado as abordagens Ripper e Ripper com under-sampling para o teste de
Friedman. A Abordagem EA-C4.5Rules ndo obteve resultados estatisticamente significantes
quando comparado as abordagens C4.5Rules e C4.5Rules com under-sampling, mas mesmo assim

apresentou bons resultados.

Quando o indutor CN2 foi utilizado para gerar classificadores de conjuntos de dados balan-
ceados, os resultados obtidos nao foram tao promissores quanto os resultados obtidos utilizando
os indutores C4.5rules e Ripper para gerar os classificadores dos conjuntos de dados balanceados.
Para alguns conjuntos de dados utilizados nos experimentos, os classificadores gerados pelo CN2
eram muito grandes, as vezes com mais de 100 regras. Nestes casos, optou-se por um tamanho
menor dos cromossomos (classificadores) do algoritmo evolutivo. Portanto, os classificadores
encontrados pela abordagem hibrida, para muitos conjuntos de dados, sao bem menores do que
os classificadores gerados pelo CN2 e pelo método Under-sampling, o que pode ter contribuido

com os resultados nao tao bons obtidos pela abordagem hibrida.

Como trabalhos futuros pretendemos investigar novas métricas para compor regras para
gerar um classificador. Estas métricas indicam quais regras devem disparar nos casos em que
multiplas regras cobrem um exemplo. Estas métricas possuem uma influéncia direta sobre o
desempenho dos classificadores e novas métricas, projetadas para classes desbalanceadas, podem

potencialmente melhorar a classificacao sobre conjuntos de dados desbalanceados.
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